Extensions 1→N→G→Q→1 with N=C32 and Q=C4oD12

Direct product G=NxQ with N=C32 and Q=C4oD12
dρLabelID
C32xC4oD1272C3^2xC4oD12432,703

Semidirect products G=N:Q with N=C32 and Q=C4oD12
extensionφ:Q→Aut NdρLabelID
C32:1(C4oD12) = C12:S3:S3φ: C4oD12/C4D6 ⊆ Aut C327212+C3^2:1(C4oD12)432,295
C32:2(C4oD12) = C12.91S32φ: C4oD12/C4D6 ⊆ Aut C32726C3^2:2(C4oD12)432,297
C32:3(C4oD12) = C12.S32φ: C4oD12/C4D6 ⊆ Aut C327212-C3^2:3(C4oD12)432,299
C32:4(C4oD12) = C62.8D6φ: C4oD12/C22D6 ⊆ Aut C327212-C3^2:4(C4oD12)432,318
C32:5(C4oD12) = C62.36D6φ: C4oD12/C2xC4S3 ⊆ Aut C32726C3^2:5(C4oD12)432,351
C32:6(C4oD12) = C62.47D6φ: C4oD12/C2xC4S3 ⊆ Aut C32726C3^2:6(C4oD12)432,387
C32:7(C4oD12) = D6.S32φ: C4oD12/Dic3C22 ⊆ Aut C32488-C3^2:7(C4oD12)432,607
C32:8(C4oD12) = D6.3S32φ: C4oD12/Dic3C22 ⊆ Aut C32248+C3^2:8(C4oD12)432,609
C32:9(C4oD12) = Dic3.S32φ: C4oD12/Dic3C22 ⊆ Aut C32248+C3^2:9(C4oD12)432,612
C32:10(C4oD12) = C12.73S32φ: C4oD12/C12C22 ⊆ Aut C3272C3^2:10(C4oD12)432,667
C32:11(C4oD12) = C12.57S32φ: C4oD12/C12C22 ⊆ Aut C32144C3^2:11(C4oD12)432,668
C32:12(C4oD12) = C12.58S32φ: C4oD12/C12C22 ⊆ Aut C3272C3^2:12(C4oD12)432,669
C32:13(C4oD12) = C12:S3:12S3φ: C4oD12/C12C22 ⊆ Aut C32484C3^2:13(C4oD12)432,688
C32:14(C4oD12) = C12.95S32φ: C4oD12/C12C22 ⊆ Aut C32484C3^2:14(C4oD12)432,689
C32:15(C4oD12) = (S3xC6).D6φ: C4oD12/D6C22 ⊆ Aut C32248+C3^2:15(C4oD12)432,606
C32:16(C4oD12) = D6.4S32φ: C4oD12/D6C22 ⊆ Aut C32488-C3^2:16(C4oD12)432,608
C32:17(C4oD12) = C62.93D6φ: C4oD12/C2xC6C22 ⊆ Aut C3272C3^2:17(C4oD12)432,678
C32:18(C4oD12) = C62.96D6φ: C4oD12/C2xC6C22 ⊆ Aut C32244C3^2:18(C4oD12)432,693
C32:19(C4oD12) = C3xD6.6D6φ: C4oD12/Dic6C2 ⊆ Aut C32484C3^2:19(C4oD12)432,647
C32:20(C4oD12) = C12.40S32φ: C4oD12/Dic6C2 ⊆ Aut C3272C3^2:20(C4oD12)432,665
C32:21(C4oD12) = C3xD6.D6φ: C4oD12/C4xS3C2 ⊆ Aut C32484C3^2:21(C4oD12)432,646
C32:22(C4oD12) = C3xD12:5S3φ: C4oD12/D12C2 ⊆ Aut C32484C3^2:22(C4oD12)432,643
C32:23(C4oD12) = (C3xD12):S3φ: C4oD12/D12C2 ⊆ Aut C32144C3^2:23(C4oD12)432,661
C32:24(C4oD12) = C3xD6.3D6φ: C4oD12/C3:D4C2 ⊆ Aut C32244C3^2:24(C4oD12)432,652
C32:25(C4oD12) = C62.90D6φ: C4oD12/C3:D4C2 ⊆ Aut C3272C3^2:25(C4oD12)432,675
C32:26(C4oD12) = C3xC12.59D6φ: C4oD12/C2xC12C2 ⊆ Aut C3272C3^2:26(C4oD12)432,713
C32:27(C4oD12) = C62.160D6φ: C4oD12/C2xC12C2 ⊆ Aut C32216C3^2:27(C4oD12)432,723

Non-split extensions G=N.Q with N=C32 and Q=C4oD12
extensionφ:Q→Aut NdρLabelID
C32.(C4oD12) = D36:6C6φ: C4oD12/C2xC4S3 ⊆ Aut C32726C3^2.(C4oD12)432,355
C32.2(C4oD12) = D6.D18φ: C4oD12/C12C22 ⊆ Aut C32724C3^2.2(C4oD12)432,287
C32.3(C4oD12) = D36:5S3φ: C4oD12/C12C22 ⊆ Aut C321444-C3^2.3(C4oD12)432,288
C32.4(C4oD12) = Dic9.D6φ: C4oD12/C12C22 ⊆ Aut C32724+C3^2.4(C4oD12)432,289
C32.5(C4oD12) = D18.3D6φ: C4oD12/C2xC6C22 ⊆ Aut C32724C3^2.5(C4oD12)432,305
C32.6(C4oD12) = C3xD36:5C2φ: C4oD12/C2xC12C2 ⊆ Aut C32722C3^2.6(C4oD12)432,344
C32.7(C4oD12) = C36.70D6φ: C4oD12/C2xC12C2 ⊆ Aut C32216C3^2.7(C4oD12)432,383

׿
x
:
Z
F
o
wr
Q
<